I Introduction and preliminary
Security of cyber and information is facing more challenges and thorny problems in today’s world. There may exist such situation: a protection by the virtue of AI (artificial intelligence) resists attackers equipped by AI in current networks. We have to consider: How to overcome various attacker equipped by AI’s tools?
The origin of AI was generally acknowledged in Dartmouth Conference in 1956. In popularly, AI is defined as: “
Artificial intelligence (AI) is a branch of computer science. It attempts to understand the essence of intelligence and produce a new kind of intelligence machine that can respond in a similar way to human intelligence. Research in this field includes robots, language recognition, image recognition, natural language processing and expert systems
.”In fact, the modern AI can be divided into two parts, namely, “artificial” and “intelligence”. It is difficult for computer to learn “qualitative change independent of quality” in terms of learning and “practice”. It is difficult for them to go directly from on “quality” to another “quality” or from one “concept” to another “concept”. Because of this, practice here is not the same practice as human beings, since the process of human practice includes both experience and creation.
For the above statement on AI, we cite an important sentence: A key signature of human intelligence is the ability to make ‘infinite use of finite means’ ([5] in 1836; [6] in 1965), as the beginning of an article entitled “
Relational inductive biases, deep learning, and graph networks
” by Battaglia et al. in [7]. They have pointed out: “in which a small set of elements (such as words) can be productively composed in limitless ways (such as into new sentences)”, and they argued that combinatorial generalization must be a top priority for AI to achieve humanlike abilities, and that structured representations and computations are key to realizing this object. As an example of supporting ‘infinite use of finite means’, selfsimilarity is common phenomena between a part of a complex system and the whole of the system.Yao et al. in [24] have listed some advantages of Chinese characters. Wang Lei, a teacher and researcher of Shenyang Institute of Education, stepped on the stage of “I am a speaker” and explained the beauty of Chinese characters as: (1) Chinese characters are pictographs, and each one of Chinese characters represents a meaning, a truth, a culture, a spirit. (2) Chinese characters are naturally topological structures. (3) The biggest advantage of Chinese characters is that the information density is very high. (4) Chinese characters is their inheritance and stability. Chinese characters are picturesque in shape, beautiful in sound and complete in meaning. It is concise, efficient and vivid, and moreover it is the most advanced written language in the world.
Ia Researching background
The existing graphical passwords (GPWs) were investigated for a long time (Ref. [14, 15, 16]). As an alternation, Wang et al. in [18] and [19] present a newtype of graphical passwords, called topological graphic passwords
(Topsnutgpws), and show their Topsnutgpws differing from the existing GPWs. A Topsnutgpw consists of two parts: one is a topological structure (graph), and one is a set of discrete elements (here, a graph labelling, or a coloring), the topological structure connects these discrete elements together to form an interesting “story” for easily remembering. Graphs of graph theory are ubiquitous in the real world, representing objects and their relationships such as social networks, ecommerce networks, biology networks and traffic networks and many areas of science such as Deep Learning, Graph Neural Network, Graph Networks (Ref.
[7] and [8]). Topsnutgpws based on techniques of graph theory, in recent years, have been investigated fast and produce abundant fruits (Ref. [43, 44, 46]).As examples, two Topsnutgpws is shown in Fig.1 (b) and (c).
There are many advantages of Topsnutgpws, such as, the space of Topsnutgpws is large enough such that the decrypting Topsnutgpws will be terrible and horrible if using current computer. In graph theory, Cayley’s formula (Ref. [10])
(1) 
pointed that the number of spanning trees (treelike Topsnutgpws) of a complete graph (network) is nonpolynomial, so Topsnutgpws are computationally security; Topsnutgpws are suitable for people who need not learn new rules and are allowed to use their private knowledge in making Topsnutgpws for the sake of remembering easily; Topsnutgpws, very often, run fast in communication networks because they are saved in computer by popular matrices rather than pictures; Topsnutgpws are suitable for using mobile equipments with touch screen and speech recognition; Topsnutgpws can generate quickly textbased passwords (TBpaws) with bytes as long as desired, but these TBpaws can not reconstruct the original Topsnutgpws, namely, it is irreversible; many mathematical conjectures (NPproblems) are related with Topsnutgpws such that they are really provable security.
The idea of “translating Chinese characters into Topsnutgpws” was first proposed in [24]. Topsnutgpws were made by Hanzigraphs are called Hanzigpws (Ref. [34, 35, 36]), see a Hanzigraph and a Hanzigpw are shown in Fig.1 (b) and (c). By the narrowed line under the Hanzimatrix shown in Fig.2(a), we get a textbased password (TBpaw) as follows
and furthermore we obtain another TBpaw
along the narrowed line under the Hanzimatrix shown in Fig.2(b). There are efficient algorithms for writing and from the Hanzimatrices. It is not difficult to see there are at least TBpaws made by two matrices and , respectively.
There are many unsolved problems in graph theory, which can persuade people to believe that Topsnutgpws can withdraw cipher’s attackers, such a famous example is: “If a graph with the maximum vertices has no a complete graph of vertices and an independent set of vertices, then we call a Ramsey graph and a Ramsey number. As known, it is a terrible job for computer to find Ramsey number , although we have known ”. Joel Spencer said:“Erdös asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for . In that case, he believes, we should attempt to destroy the aliens”.
IB Researching tasks
Although Yao et al. [24] have proposed Hanzigraphs and Hanzigpws, however, we think that their junior work is just a beginning on Topsnutgpws made by the idea of “Hanzigraphs puls graph labellings”.
Our goals are: (1) To design passwords of Chinese characters by voice inputting, hand inputting into computers and mobile equipments with touch screen; (2) to make more complex TBpaws for encrypting electronic files, or encrypting networks.
In technique, we will introduce how to construct mathematical models of Chinese characters, called Hanzigraphs, and then use Hanzigraphs and graph labelling/colorings to build up Hanzigraph passwords, called Hanzigpws. Then, several types of Hanzimatrices will be defined for producing TBpaws. Moreover, we will explore to encrypt dynamic networks, such as deterministic networks, scalefree networks, selfsimilar networks, and so on.
In producing TBpaws from Hanzigpws, we can get TBpaws with hundreds bytes. As known, bruteforce attacks work by calculating every possible combination that could make up a password and testing it to see if it is the correct password. As the password’s length increases, the amount of time, on average, to find the correct password increases exponentially. AES (Advanced Encryption Standard) permits the use of 256bit keys. How many possible combinations of (or 256bit) encryption are there? There are
115,792,089,237,316,195,423,570,985,008,687,907,853,
269,984,665,640,564,039,457,584,007,913,129,639,936
(78 digits) possible combinations for 256bit keys [1]. Breaking a symmetric 256bit key by brute force requires times more computational power than a 128bit key. Fifty supercomputers that could check a billion billion () AES keys per second (if such a device could ever be made) would, in theory, require about years to exhaust the 256bit key space, cited from “Bruteforce attack” in Wikipedia.
IC Preliminaries: terminology, notation and definitions
Undefined labelling definitions, terminology and algorithms mentioned here are cited from [10] and [11]. The following terminology and notation will be used in this article:

Hanzis (Chinese characters) mentioned here are listed in GB231280 encoding of Chinese characters, in which there are 6763 simplified Chinese characters and 682 signs (another Chinese encoding is GBK, formed in Oct. 1995, containing 21003 simplified Chinese characters and 883 signs, [42]).

A graph has vertices (nodes) and edges (links), notations and are the sets of vertices and edges of , respectively.

The number of elements of a set is called cardinality, denoted as .

The set of neighbors of a vertex is denoted as , and the number of elements of the set is denoted as , also, is called the degree of the vertex , very often, write .

A vertex is called a “leaf” if its degree .

A subgraph of a graph is called a vertexinduced subgraph over a subset of if and for any . Very often, we write this subgraph as .

An edgeinduced graph over an edge subset of is a subgraph having its edge set and its vertex set containing two ends of every edge of .
We will use various labelling techniques of graph theory in this article.
Definition 1.
[26] A labelling of a graph is a mapping such that for any pair of elements of , and write the label set . A dual labelling of a labelling is defined as: for . Moreover, is called the vertex label set if , the edge label set if , and the universal label set if . Furthermore, if is a bipartite graph with vertex bipartition , and holds , we call a setordered labelling of .
We use a notation to denote the set of all subsets of a set . For instance, , so has its own elements: , , , , , and . The empty set is not allowed to belong to hereafter. We will use settype of labellings defined in the following Definition 2.
Definition 2.
[26] Let be a graph . We have:
(i) A set mapping is called a total setlabelling of if for distinct elements .
(ii) A vertex set mapping is called a vertex setlabelling of if for distinct vertices .
(iii) An edge set mapping is called an edge setlabelling of if for distinct edges .
(iv) A vertex set mapping and a proper edge mapping are called a vset eproper labelling of if for distinct vertices and two edge labels for distinct edges .
(v) An edge set mapping and a proper vertex mapping are called an eset vproper labelling of if for distinct edges and two vertex labels for distinct vertices .
Ii Translating Chinese characters into graphs
Hanzis, also Chinese characters, are expressed in many forms, such as: font, calligraphy, traditional Chinese characters, simplified Chinese characters, brush word, etc. As known, China Online Dictionary includes Xinhua Dictionary, Modern Chinese Dictionary, Modern Idiom Dictionary, Ancient Chinese Dictionary, and other 12 dictionaries total, China Online Dictionary contains about 20950 Chinese characters; 520,000 words; 360,000 words (28,770 commonly used words); 31920 idioms; 4320 synonyms; 7690 antonyms; 14000 allegorical sayings; 28070 riddles; and famous aphorism 19420.
Iia Two types of Chinese characters
In general, there are two type of Chinese characters used in the world, one is called traditional Chinese characters and another one simplified Chinese characters, see Fig.3. We, very often, call a traditional Chinese characters or a simplified Chinese characters as a Hanzi (Chinese character).
The stroke number of a Hanzi is less than that of the traditional Chinese character corresponding with , in general. We can compute the difference of two strokes of twotype Chinese characters and , denoted as . For example, , where the Hanzi is shown in Fig.3(13). And, , where the Hanzi is shown in Fig.3(3).
Some Hanzis are no distinguishing about traditional Chinese characters and simplified Chinese characters.
IiB Different fonts of Hanzis
There are four fonts in printed Hanzis. In Fig.5, we give four basic fonts: Songti, Fangsong, Heiti and Kaiti. Clearly, there are differences in some printed Hanzis. These differences will be important for us when we build up mathematical models of Hanzis.
IiC Matching behaviors of Hanzigraphs
IiC1 Duilians, also, Chinese couplets
In Chinese culture, a sentence, called “Shanglian”, has its own matching sentence, named as “Xialian”, and two sentences Shanglian and Xialian form a Chinese couplet, refereed as “Duilian” in Chinese. The sentence (a) of Fig.6 is a Shanglian, and the sentence (b) of Fig.6 is a Xialian of the Shanglian (a). We can use Duilians to design Topsnutgpws. For example, we can consider the Shanglian (a) shown in Fig.6 as a public key, the Xialian (b) shown in Fig.6 as a private key, and the Duilian (c) as the authentication. Moreover, the Duilian (c) can be made as a public key, and it has its own matching Duilian (d) as a private key, we have the authentication (e) of two Duilians (c) and (d). However, Duilians have their complex, for instance, the Shanglian (f) shown in Fig.6 has over candidate private keys. As known, a Duilian “Chongqing Yonglian” written by Xueyi Long has 1810 Hanzis. Other particular Chinese couplets are shown in Fig.7 and Fig.8.
IiC2 Conundrums in Chinese
Chinese riddles (also “Miyu”) are welcomed by Chinese people, and Chinese riddles appear in many where and actions of China. (see Fig. 9)
IiC3 Chinese Xiehouyu
“Xiehouyu” is a twopart allegorical saying, of which the first part, always stated, is descriptive, while the second part, sometimes unstated, carries the message (see Fig.10).
IiC4 Chinese tongue twisters
Chinese tongue twisters are often applied in Chinese comic dialogue (cross talk), which are popular in China. (see Fig. 11)
IiC5 Understanding by insight, homonyms
Such examples shown in Fig.12.
IiC6 Same pronunciation, same Pianpang
IiC7 Chinese dialects
IiC8 Split Hanzis, building Hanzis
IiC9 Explaining Hanzis
See examples are shown in Fig.18.
IiC10 Tang poems
As known, there are at least 5880195 Tang poems in China (see Fig.19).
IiC11 Idioms and Hanzi idiomgraphs
A Hanzi idiomgraph (see Fig.20) is one labelled with Hanzi idioms by a vertex labelling , two vertices are joined by an edge labelled with .
IiC12 Traditional Chinese characters are complex than Simplified Chinese characters
Expect the stroke number of a traditional Chinese character is greater than that of a simplified Chinese character, the usage of some traditional Chinese characters, also, is not unique, such examples are shown in Fig.21.
IiC13 Configuration in Hanzis

Symmetry means that Hanzis posses horizontal symmetrical structures, or vertical symmetrical structures, or two directional symmetries. We select some Hanzis having symmetrical structures in Fig.22 (a), (b), (c) and (f).

Overlapping Hanzis. See some overlapping Hanzis shown in Fig.22 (d), (e), (f) and (g). Moreover, in Fig.22 (g), a Hanzi (read ‘shuāng’) (2overlapping Hanzi) is consisted of two Hanzis (read ‘yòu’), and another (read ‘ruò’) (3overlapping Hanzi) is consisted of three Hanzis . Moreover, four Hanzi construct a Hanzi (read as ‘zhuó’, 4overlapping Hanzi).
IiD Mathematical models of Hanzis
We will build up mathematical models of Hanzis, called Hanzigraphs, in this subsection.
IiD1 The existing expressions of Hanzis
In fact, a Hanzi has been expressed in the way: (1) a “pinyin” in oral communication, for example, the pinyin “rén” means “man”, but it also stands for other 12 Hanzis at least (see Fig.23(a)); (2) a word with four English letters and numbers of , for instance, “rén”=4EBA (see Fig.23(b), also called a code); (3) a number code “4043” defined in “GB231280 Encoding of Chinese characters” [42]S, which is constituted by (see Fig.23(c)).
Clearly, the above three ways are not possible for making passwords with bytes as long as desired. We introduce the fourth way, named as Topsnutgpw, see an example shown in Fig.1(c).
As known, Hanzigraphs are saved in computer by popular matrices, see a Hanzigraph shown in Fig.1 (b) and its matrix shown in Fig.2 (a).
In Fig.25, we use two expressions (a1) and (a2) to substitute a Chinese sentence (a), that is, (a)=(a1), or (a)=(a2). By this method, we have
(a1) ;
(a2) .
(b1) ;
(b2)
(c1) ;
(c2)
(d1) ;
(d2)
(e1) ;
(e2)
(f1) ;
(f2)
(g1) ;
(g2)
(h1) ;
(h2)
(i1) ;
(i2)
(j1) ;
(j2)
(k1) ;
(k2)
(l1) ;
(l2)
Fig.25 shows some permutations of nine Hanzis , , , , , , , , . In fact, there are about permutations made by these nine Hanzis. If a paragraph was made by a fixed group of 50 Hanzis, then we may have about paragraphs made by the same group . So, we have enough large space of Hanzigraphs for making Hanzigpws.
IiD2 Basic rules for Hanzigraphs
For the task of building mathematical models of Hanzis, called Hanzigraphs, we give some rules for transforming Hanzis into Hanzigraphs.

No oddcycles.
We restrict our Hanzigraphs have no oddcycles for the guarantee of setordered graceful labellings (see Fig.
30). There are over 6763 Hanzis in [42], and we have 3500 Hanzis in frequently used. So it is not an easy job to realize the setordered gracefulness of the Hanzigraphs in [42]. Clearly, the 0rotatable gracefulness of the Hanzigraphs in [42] will be not slight, see Definition 35.
A group of Hanzigraphs made by Rule with is shown in Fig.31. If a Hanzigraph is disconnected, and has components, we refer to it as a Hanzigraph directly.
IiE Space of Hanzigraphs
A list of commonly used Hanzis in modern Chinese was issued by The State Language Work Committee and The State Education Commission in 1988, with a total of 3500 characters. The commonly used part of the Hanzis with a coverage rate of 97.97% is about 2500 characters. This means that the commonly used 2500 characters can help us to make a vast space of Hanzigraphs.
For example, the probability of a Hanzi appearing just once in a Chinese paragraph is a half, so the space of paragraphs made in Hanzis contains at lest
elements, which is far more than the number of sands on the earth. It is known that the number of sands on the earth is about , or about, someone estimates the number of sands on the earth as
.Iii Mathematical techniques
Since some Topsnutgpws were made by graph coloting/labellings, we show the following definitions of graph coloting/labellings for easily reading and quickly working.
Iiia Known labellings
Definition 3.
[29] An edgemagic total graceful labelling of a graph is defined as: such that for any two elements , and with a constant for each edge . Moreover, is super if (or ).
In Definition 4 we restate several known labellings that can be found in [11], [31], [48, 49] and [23]. We write and hereafter.
Definition 4.
Suppose that a connected graph admits a mapping . For edges the induced edge labels are defined as . Write , . There are the following constraints:

.

.

, .

, .

.

.

is a bipartite graph with the bipartition such that ( for short).

is a tree containing a perfect matching such that for each edge .

is a tree having a perfect matching such that for each edge .
Then we have: a graceful labelling satisfies (a), (c) and (e); a setordered graceful labelling holds (a), (c), (e) and (g) true; a strongly graceful labelling holds (a), (c), (e) and (h) true; a strongly setordered graceful labelling holds (a), (c), (e), (g) and (h) true. An oddgraceful labelling holds (a), (d) and (f) true; a setordered oddgraceful labelling holds (a), (d), (f) and (g) true; a strongly oddgraceful labelling holds (a), (d), (f) and (i) true; a strongly setordered oddgraceful labelling holds (a), (d), (f), (g) and (i) true.
Definition 5.
A total graceful labelling of a graph is defined as: such that for each edge , and for any two elements . Moreover, is super if (or ).
Definition 6.
Let be a graph having vertices and edges, and let for integers and .
(1) [11] A felicitous labelling of holds: , for distinct and ; and furthermore, is super if .
(2) [13] A graceful labelling of holds , for distinct and . Especially, a graceful labelling is also a graceful labelling.
(3) [11] An edgemagic total labelling of holds such that for any edge , where the magic constant is a fixed integer; and furthermore is super if .
(4) [11] A edge antimagic total labelling of holds and , and furthermore is super if .
(5) [49] An oddelegant labelling of holds , for distinct , and .
(6) [9] A labeling of is said to be arithmetic if , for distinct and .
(7) [11] A harmonious labelling of holds , and such that (i) if is not a tree, for distinct ; (ii) if is a tree, for distinct , and for some .
Definition 7.
[26] Let be a total labelling of a graph . If there is a constant such that , and each edge corresponds another edge holding , then we name as a relaxed edgemagic total labelling (relaxed Emtlabelling) of (called a relaxed Emtgraph).
Definition 8.
[26] Suppose that a graph admits a vertex labelling and an edge labelling . If there is a constant such that for each edge , and , then we refer to as an oddedgemagic matching labelling (Oemmlabelling) of (called an Oemmgraph).
Definition 9.
[26] Suppose that a graph admits a vertex labelling and an edge labelling , and let for . If (i) each edge corresponds an edge such that ; (ii) and there exists a constant such that each edge has a matching edge holding true; (iii) there exists a constant such that for each edge . Then we call an eedifference oddedgemagic matching labelling (Eedoemmlabelling) of (called a Eedoemmgraph).
Definition 10.
[26] A total labelling for a bipartite graph is a bijection and holds:
(i) (emagic) ;
(ii) (eedifference) each edge matches with another edge holding (or );
(iii) (eebalanced) let for , then there exists a constant such that each edge matches with another edge holding (or ) true;
(iv) (EVordered) (or , or , or , or is an oddset and is an evenset);
(v) (vematching) there exists a constant such that each edge matches with one vertex such that , and each vertex matches with one edge such that , except the singularity ;
(vi) (setordered) (or ) for the bipartition of .
We refer to as a 6Clabelling.
Definition 11.
[26] Suppose that a graph admits a vertex labelling and an edge labelling , and let for . If there are: (i) each edge corresponds an edge such that (or ); (ii) and there exists a constant such that each edge has a matching edge holding true; (iii) there exists a constant such that for each edge ; (iv) there exists a constant such that each edge matches with one vertex such that , and each vertex matches with one edge such that , except the singularity . Then we name as an eedifference gracefulmagic matching labelling (Dgemmlabelling) of (called a Dgemmgraph).
Definition 12.
[26] Let be a labelling of a graph , and let
we say to be a differencesum labelling. Find two extremum (profit) and (cost) over all differencesum labellings of .
Definition 13.
[26] Let be a labelling of a graph , and let
we call a felicitoussum labelling. Find two extremum and over all felicitoussum labellings of .
Definition 14.
A connected graph admits a labelling , such that for any pair of elements . We have the following sums:
(2) 
(3) 
and
(4) 
Find these six extremum , , , , and over all labellings of , where vesumdifference, vedifference, kedgeaverage.
Definition 15.
[47] Let be the bipartition of a bipartite graph . If admits a felicitous labelling such that , then we refer to as a setordered felicitous labelling and a setordered felicitous graph, and write this case as , and moreover is called an optimal setordered felicitous labelling if and .
Definition 16.
Definition 17.
[27] A graph admits a multiple edgemeaning vertex labelling such that (1) and a constant ; (2) and a constant ; (3) and ; (4) and a constant ; (5) an odd number for each edge holding , and with .
Definition 18.
[27] A graph admits a vertex setlabelling (or , and induces an edge setlabelling . If we can select a representative for each edge label set with such that
we then call a gracefulintersection (or an oddgracefulintersection) total setlabelling of .
Definition 19.
[27] Let be an everyzero graphic group. A graph admits a graceful grouplabelling (or an oddgraceful grouplabelling) such that each edge is labelled by under a zero , and (or ).
Definition 20.
[27] Let be an oddgraceful labelling of a graph , such that and . If , then is called a perfect oddgraceful labelling of .
Definition 21.
[27] Suppose that a graph admits an labelling . If , we call a perfect labelling of .
Definition 22.
[27] Let be a labelling of a graph and let each edge have its own label as with . If each edge holds true, where is a positive constant, we call and
Comments
There are no comments yet.