User Preference Prediction in Visual Data on Mobile Devices

07/10/2019
by   A. V. Savchenko, et al.
0

In this paper we consider the user modeling given the photos and videos from the gallery on a mobile device. We propose the novel user preference prediction engine based on scene understanding, object detection and face recognition. At first, all faces in a gallery are clustered and all private photos and videos with faces from large clusters are processed on the embedded system in offline mode. Other photos are sent to the remote server to be analyzed by very deep models. The visual features of each photo are aggregated into a single user descriptor using the neural attention block. The proposed pipeline is implemented for the Android mobile platform. Experimental results with a subset of Amazon Home and Kitchen, Places2 and Open Images datasets demonstrate the possibility to process images very efficiently without accuracy degradation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro