Upward and Orthogonal Planarity are W[1]-hard Parameterized by Treewidth
Upward planarity testing and Rectilinear planarity testing are central problems in graph drawing. It is known that they are both NP-complete, but XP when parameterized by treewidth. In this paper we show that these two problems are W[1]-hard parameterized by treewidth, which answers open problems posed in two earlier papers. The key step in our proof is an analysis of the All-or-Nothing Flow problem, a generalization of which was used as an intermediate step in the NP-completeness proof for both planarity testing problems. We prove that the flow problem is W[1]-hard parameterized by treewidth on planar graphs, and that the existing chain of reductions to the planarity testing problems can be adapted without blowing up the treewidth. Our reductions also show that the known n^O(tw)-time algorithms cannot be improved to run in time n^o(tw) unless ETH fails.
READ FULL TEXT