Unsupervised Semantic Parsing of Video Collections

06/28/2015
by   Ozan Sener, et al.
0

Human communication typically has an underlying structure. This is reflected in the fact that in many user generated videos, a starting point, ending, and certain objective steps between these two can be identified. In this paper, we propose a method for parsing a video into such semantic steps in an unsupervised way. The proposed method is capable of providing a semantic "storyline" of the video composed of its objective steps. We accomplish this using both visual and language cues in a joint generative model. The proposed method can also provide a textual description for each of the identified semantic steps and video segments. We evaluate this method on a large number of complex YouTube videos and show results of unprecedented quality for this intricate and impactful problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset