Unsupervised learning for concept detection in medical images: a comparative analysis

05/04/2018 ∙ by Eduardo Pinho, et al. ∙ 0

As digital medical imaging becomes more prevalent and archives increase in size, representation learning exposes an interesting opportunity for enhanced medical decision support systems. On the other hand, medical imaging data is often scarce and short on annotations. In this paper, we present an assessment of unsupervised feature learning approaches for images in the biomedical literature, which can be applied to automatic biomedical concept detection. Six unsupervised representation learning methods were built, including traditional bags of visual words, autoencoders, and generative adversarial networks. Each model was trained, and their respective feature space evaluated using images from the ImageCLEF 2017 concept detection task. We conclude that it is possible to obtain more powerful representations with modern deep learning approaches, in contrast with previously popular computer vision methods. Although generative adversarial networks can provide good results, they are harder to succeed in highly varied data sets. The possibility of semi-supervised learning, as well as their use in medical information retrieval problems, are the next steps to be strongly considered.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.