Unsupervised Image-to-Image Translation with Stacked Cycle-Consistent Adversarial Networks

07/23/2018
by   Minjun Li, et al.
0

Recent studies on unsupervised image-to-image translation have made remarkable progress by training a pair of generative adversarial networks with a cycle-consistent loss. However, such unsupervised methods may generate inferior results when the image resolution is high or the two image domains are of significant appearance differences, such as the translations between semantic layouts and natural images in the Cityscapes dataset. In this paper, we propose novel Stacked Cycle-Consistent Adversarial Networks (SCANs) by decomposing a single translation into multi-stage transformations, which not only boost the image translation quality but also enable higher resolution image-to-image translation in a coarse-to-fine fashion. Moreover, to properly exploit the information from the previous stage, an adaptive fusion block is devised to learn a dynamic integration of the current stage's output and the previous stage's output. Experiments on multiple datasets demonstrate that our proposed approach can improve the translation quality compared with previous single-stage unsupervised methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset