Unsupervised Domain Adaptation by Uncertain Feature Alignment

09/14/2020
by   Tobias Ringwald, et al.
0

Unsupervised domain adaptation (UDA) deals with the adaptation of models from a given source domain with labeled data to an unlabeled target domain. In this paper, we utilize the inherent prediction uncertainty of a model to accomplish the domain adaptation task. The uncertainty is measured by Monte-Carlo dropout and used for our proposed Uncertainty-based Filtering and Feature Alignment (UFAL) that combines an Uncertain Feature Loss (UFL) function and an Uncertainty-Based Filtering (UBF) approach for alignment of features in Euclidean space. Our method surpasses recently proposed architectures and achieves state-of-the-art results on multiple challenging datasets. Code is available on the project website.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro