Unsupervised Disentanglement of Linear-Encoded Facial Semantics

03/30/2021 ∙ by Yutong Zheng, et al. ∙ 0

We propose a method to disentangle linear-encoded facial semantics from StyleGAN without external supervision. The method derives from linear regression and sparse representation learning concepts to make the disentangled latent representations easily interpreted as well. We start by coupling StyleGAN with a stabilized 3D deformable facial reconstruction method to decompose single-view GAN generations into multiple semantics. Latent representations are then extracted to capture interpretable facial semantics. In this work, we make it possible to get rid of labels for disentangling meaningful facial semantics. Also, we demonstrate that the guided extrapolation along the disentangled representations can help with data augmentation, which sheds light on handling unbalanced data. Finally, we provide an analysis of our learned localized facial representations and illustrate that the semantic information is encoded, which surprisingly complies with human intuition. The overall unsupervised design brings more flexibility to representation learning in the wild.



There are no comments yet.


page 13

page 19

page 21

page 22

page 23

page 24

page 25

page 26

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.