Unsupervised Controllable Text Formalization

09/10/2018 ∙ by Parag Jain, et al. ∙ 0

We propose a novel framework for controllable natural language transformation. Realizing that the requirement of parallel corpus is practically unsustainable for controllable generation tasks, an unsupervised training scheme is introduced. The crux of the framework is a deep neural encoder-decoder that is reinforced with text-transformation knowledge through auxiliary modules (called scorers). The scorers, based on off-the-shelf language processing tools, decide the learning scheme of the encoder-decoder based on its actions. We apply this framework for the text-transformation task of formalizing an input text by improving its readability grade; the degree of required formalization can be controlled by the user at run-time. Experiments on public datasets demonstrate the efficacy of our model towards: (a) transforming a given text to a more formal style, and (b) introducing appropriate amount of formalness in the output text pertaining to the input control. Our code and datasets are released for academic use.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.