Unsupervised Classification of Intrusive Igneous Rock Thin Section Images using Edge Detection and Colour Analysis

09/30/2017
by   S. Joseph, et al.
0

Classification of rocks is one of the fundamental tasks in a geological study. The process requires a human expert to examine sampled thin section images under a microscope. In this study, we propose a method that uses microscope automation, digital image acquisition, edge detection and colour analysis (histogram). We collected 60 digital images from 20 standard thin sections using a digital camera mounted on a conventional microscope. Each image is partitioned into a finite number of cells that form a grid structure. Edge and colour profile of pixels inside each cell determine its classification. The individual cells then determine the thin section image classification via a majority voting scheme. Our method yielded successful results as high as 90

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro