Unraveling the Interconnected Axes of Heterogeneity in Machine Learning for Democratic and Inclusive Advancements

by   Maryam Molamohammadi, et al.

The growing utilization of machine learning (ML) in decision-making processes raises questions about its benefits to society. In this study, we identify and analyze three axes of heterogeneity that significantly influence the trajectory of ML products. These axes are i) values, culture and regulations, ii) data composition, and iii) resource and infrastructure capacity. We demonstrate how these axes are interdependent and mutually influence one another, emphasizing the need to consider and address them jointly. Unfortunately, the current research landscape falls short in this regard, often failing to adopt a holistic approach. We examine the prevalent practices and methodologies that skew these axes in favor of a selected few, resulting in power concentration, homogenized control, and increased dependency. We discuss how this fragmented study of the three axes poses a significant challenge, leading to an impractical solution space that lacks reflection of real-world scenarios. Addressing these issues is crucial to ensure a more comprehensive understanding of the interconnected nature of society and to foster the democratic and inclusive development of ML systems that are more aligned with real-world complexities and its diverse requirements.


Managing Data Lineage of O G Machine Learning Models: The Sweet Spot for Shale Use Case

Machine Learning (ML) has increased its role, becoming essential in seve...

Machine Learning that Matters

Much of current machine learning (ML) research has lost its connection t...

SoK: Assessing the State of Applied Federated Machine Learning

Machine Learning (ML) has shown significant potential in various applica...

Demystifying a Dark Art: Understanding Real-World Machine Learning Model Development

It is well-known that the process of developing machine learning (ML) wo...

Understanding the Nature of System-Related Issues in Machine Learning Frameworks: An Exploratory Study

Modern systems are built using development frameworks. These frameworks ...

Please sign up or login with your details

Forgot password? Click here to reset