Unlocking Foundation Models for Privacy-Enhancing Speech Understanding: An Early Study on Low Resource Speech Training Leveraging Label-guided Synthetic Speech Content

06/13/2023
by   Tiantian Feng, et al.
0

Automatic Speech Understanding (ASU) leverages the power of deep learning models for accurate interpretation of human speech, leading to a wide range of speech applications that enrich the human experience. However, training a robust ASU model requires the curation of a large number of speech samples, creating risks for privacy breaches. In this work, we investigate using foundation models to assist privacy-enhancing speech computing. Unlike conventional works focusing primarily on data perturbation or distributed algorithms, our work studies the possibilities of using pre-trained generative models to synthesize speech content as training data with just label guidance. We show that zero-shot learning with training label-guided synthetic speech content remains a challenging task. On the other hand, our results demonstrate that the model trained with synthetic speech samples provides an effective initialization point for low-resource ASU training. This result reveals the potential to enhance privacy by reducing user data collection but using label-guided synthetic speech content.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro