Universality of regularized regression estimators in high dimensions

06/16/2022
by   Qiyang Han, et al.
0

The Convex Gaussian Min-Max Theorem (CGMT) has emerged as a prominent theoretical tool for analyzing the precise stochastic behavior of various statistical estimators in the so-called high dimensional proportional regime, where the sample size and the signal dimension are of the same order. However, a well recognized limitation of the existing CGMT machinery rests in its stringent requirement on the exact Gaussianity of the design matrix, therefore rendering the obtained precise high dimensional asymptotics largely a specific Gaussian theory in various important statistical models. This paper provides a structural universality framework for a broad class of regularized regression estimators that is particularly compatible with the CGMT machinery. In particular, we show that with a good enough ℓ_∞ bound for the regression estimator μ̂_A, any `structural property' that can be detected via the CGMT for μ̂_G (under a standard Gaussian design G) also holds for μ̂_A under a general design A with independent entries. As a proof of concept, we demonstrate our new universality framework in three key examples of regularized regression estimators: the Ridge, Lasso and regularized robust regression estimators, where new universality properties of risk asymptotics and/or distributions of regression estimators and other related quantities are proved. As a major statistical implication of the Lasso universality results, we validate inference procedures using the degrees-of-freedom adjusted debiased Lasso under general design and error distributions. We also provide a counterexample, showing that universality properties for regularized regression estimators do not extend to general isotropic designs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset