Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines
Machine learning is considered to be one of the most promising applications of quantum computing. Therefore, the search for quantum advantage of the quantum analogues of machine learning models is a key research goal. Here, we show that variational quantum classifiers (VQC) and support vector machines with quantum kernels (QSVM) can solve a classification problem based on the k-Forrelation problem, which is known to be PromiseBQP-complete. Because the PromiseBQP complexity class includes all Bounded-Error Quantum Polynomial-Time (BQP) decision problems, our results imply that there exists a feature map and a quantum kernel that make VQC and QSVM efficient solvers for any BQP problem. This means that the feature map of VQC or the quantum kernel of QSVM can be designed to have quantum advantage for any classification problem that cannot be classically solved in polynomial time but contrariwise by a quantum computer.
READ FULL TEXT