Universal Conditional Machine

06/06/2018
by   Oleg Ivanov, et al.
4

We propose a single neural probabilistic model based on variational autoencoder that can be conditioned on an arbitrary subset of observed features and then sample the remaining features in "one shot". The features may be both real-valued and categorical. Training of the model is performed by stochastic variational Bayes. The experimental evaluation on synthetic data, as well as feature imputation and image inpainting problems, shows the effectiveness of the proposed approach and diversity of the generated samples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset