Universal Bounds for Size and Energy of Codes of Given Minimum and Maximum Distances

10/16/2019
by   Peter Boyvalenkov, et al.
0

We employ signed measures that are positive definite up to certain degrees to establish Levenshtein-type upper bounds on the cardinality of codes with given minimum and maximum distances, and universal lower bounds on the potential energy (for absolutely monotone interactions) for codes with given maximum distance and cardinality. The distance distributions of codes that attain the bounds are found in terms of the parameters of Levenshtein-type quadrature formulas. Necessary and sufficient conditions for the optimality of our bounds are derived. Further, we obtain upper bounds on the energy of codes of fixed minimum and maximum distances and cardinality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro