Universal Approximation of Residual Flows in Maximum Mean Discrepancy

03/10/2021
by   Zhifeng Kong, et al.
0

Normalizing flows are a class of flexible deep generative models that offer easy likelihood computation. Despite their empirical success, there is little theoretical understanding of their expressiveness. In this work, we study residual flows, a class of normalizing flows composed of Lipschitz residual blocks. We prove residual flows are universal approximators in maximum mean discrepancy. We provide upper bounds on the number of residual blocks to achieve approximation under different assumptions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset