Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot's consolidation model

by   Johannes Kraus, et al.

We consider the quasi-static Biot's consolidation model in a three-field formulation with the three unknown physical quantities of interest being the displacement u of the solid matrix, the seepage velocity v of the fluid and the pore pressure p. As conservation of fluid mass is a leading physical principle in poromechanics, we preserve this property using an H(div)-conforming ansatz for u and v together with an appropriate pressure space. This results in Stokes and Darcy stability and exact, that is, pointwise mass conservation of the discrete model. The proposed discretization technique combines a hybridized discontinuous Galerkin method for the elasticity subproblem with a mixed method for the flow subproblem, also handled by hybridization. The latter allows for a static condensation step to eliminate the seepage velocity from the system while preserving mass conservation. The system to be solved finally only contains degrees of freedom related to u and p resulting from the hybridization process and thus provides, especially for higher-order approximations, a very cost-efficient family of physics-oriented space discretizations for poroelasticity problems. We present the construction of the discrete model, theoretical results related to its uniform well-posedness along with optimal error estimates and parameter-robust preconditioners as a key tool for developing uniformly convergent iterative solvers. Finally, the cost-efficiency of the proposed approach is illustrated in a series of numerical tests for three-dimensional test cases.


page 1

page 2

page 3

page 4


Hybridized Discontinuous Galerkin Methods for a Multiple Network Poroelasticity Model with Medical Applications

The quasi-static multiple network poroelastic theory (MPET) model, first...

Pressure-robust enriched Galerkin methods for the Stokes equations

In this paper, we present a pressure-robust enriched Galerkin (EG) schem...

Flow based features and validation metric for machine learning reconstruction of PIV data

Reconstruction of flow field from real sparse data by a physics-oriented...

Quasi-optimal and pressure robust discretizations of the Stokes equations by moment- and divergence-preserving operators

We approximate the solution of the Stokes equations by a new quasi-optim...

Minimal order H(div)-conforming velocity-vorticity approximations for incompressible fluids

We introduce a novel minimal order hybrid Discontinuous Galerkin (HDG) a...

Hybrid Kinetic/Fluid numerical method for the Vlasov-BGK equation in the diffusive scaling

This paper presents a hybrid numerical method for linear collisional kin...

Please sign up or login with your details

Forgot password? Click here to reset