Uniform convergence of an upwind discontinuous Galerkin method for solving scaled discrete-ordinate radiative transfer equations with isotropic scattering kernel
We present an error analysis for the discontinuous Galerkin method applied to the discrete-ordinate discretization of the steady-state radiative transfer equation. Under some mild assumptions, we show that the DG method converges uniformly with respect to a scaling parameter ε which characterizes the strength of scattering in the system. However, the rate is not optimal and can be polluted by the presence of boundary layers. In one-dimensional slab geometries, we demonstrate optimal convergence when boundary layers are not present and analyze a simple strategy for balance interior and boundary layer errors. Some numerical tests are also provided in this reduced setting.
READ FULL TEXT