Unified 2D and 3D Pre-Training of Molecular Representations

by   Jinhua Zhu, et al.

Molecular representation learning has attracted much attention recently. A molecule can be viewed as a 2D graph with nodes/atoms connected by edges/bonds, and can also be represented by a 3D conformation with 3-dimensional coordinates of all atoms. We note that most previous work handles 2D and 3D information separately, while jointly leveraging these two sources may foster a more informative representation. In this work, we explore this appealing idea and propose a new representation learning method based on a unified 2D and 3D pre-training. Atom coordinates and interatomic distances are encoded and then fused with atomic representations through graph neural networks. The model is pre-trained on three tasks: reconstruction of masked atoms and coordinates, 3D conformation generation conditioned on 2D graph, and 2D graph generation conditioned on 3D conformation. We evaluate our method on 11 downstream molecular property prediction tasks: 7 with 2D information only and 4 with both 2D and 3D information. Our method achieves state-of-the-art results on 10 tasks, and the average improvement on 2D-only tasks is 8.3 achieves significant improvement on two 3D conformation generation tasks.


page 1

page 2

page 3

page 4


Pre-training Transformers for Molecular Property Prediction Using Reaction Prediction

Molecular property prediction is essential in chemistry, especially for ...

Direct Molecular Conformation Generation

Molecular conformation generation aims to generate three-dimensional coo...

Dual-view Molecule Pre-training

Inspired by its success in natural language processing and computer visi...

BatmanNet: Bi-branch Masked Graph Transformer Autoencoder for Molecular Representation

Although substantial efforts have been made using graph neural networks ...

Graph Mixture Density Networks

We introduce the Graph Mixture Density Network, a new family of machine ...

Gode – Integrating Biochemical Knowledge Graph into Pre-training Molecule Graph Neural Network

The precise prediction of molecular properties holds paramount importanc...

Hypergraph Pre-training with Graph Neural Networks

Despite the prevalence of hypergraphs in a variety of high-impact applic...

Please sign up or login with your details

Forgot password? Click here to reset