References
 [1] A. Arakawa. “Computational Design for LongTerm Numerical Integration of the Equations of Fluid Motion”, Journal of Computational Physics, vol. 1, p. 119143, 1966.
 [2] A. Augier, B. Graille, F. Dubois. “On rotational invariance of Lattice Boltzmann schemes”, Computers and Mathematics with Applications, vol. 67, p. 239255, 2014.
 [3] B. Boghosian, F. Dubois, B. Graille, P. Lallemand, M. Tekitek. “ Curious convergence properties of lattice Boltzmann schemes for diffusion with acoustic scaling”, Communications in Computational Physics, to appear, 2018.
 [4] S. Dellacherie. “Construction and Analysis of Lattice Boltzmann Methods Applied to a 1D ConvectionDiffusion Equation”, Acta Applicandae Mathematica, vol. 131, Issue 1, p. 69140, 2014.
 [5] F. Dubois. ”Third order equivalent equation of lattice Boltzmann scheme”, Discrete and Continuous Dynamical SystemsSeries A, vol. 23, p. 221248, 2009.
 [6] F. Dubois, P. Lallemand. “Towards higher order lattice Boltzmann schemes ”, J. Stat. Mech.: Theory and Experiment, P06006, 2009.
 [7] F. Dubois, P. Lallemand. “On Triangular Lattice Boltzmann Schemes for Scalar Problems”, Communications in Computational Physics, vol. 13, p. 649670, 2013.
 [8] F.H. Harlaw, J.E.Welsch. “Numerical calculation of timedependent viscous incompressible flow of fluid with a free surface”, Physics of Fluids, vol. 8, p. 21822189, 1965.
 [9] M. Hénon. “Viscosity of a Lattice Gas”, Complex Systems, vol. 1, p. 763789, 1987.
 [10] D. d’Humières. “Generalized LatticeBoltzmann Equations”, in Rarefied Gas Dynamics: Theory and Simulations, vol. 159 of AIAA Progress in Astronautics and Astronautics, p. 450458, 1992.
 [11] M.Junk, A.Klar, L.S. Luo. “Asymptotic analysis of the lattice Boltzmann equation”, Journal of Computational Physics, vol. 210, p. 676704, 2005.
 [12] M.Junk, Z. Yang. “Convergence of lattice Boltzmann methods for Navier Stokes flows in periodic and bounded domains”, Numerische Mathematik, vol. 112, Issue 1, p. 6587, 2009.
 [13] M.Junk, Z. Yang. “ convergence of the lattice Boltzmann method for one dimensional convectiondiffusionreaction equations”, Communications in Computational Physics, vol. 17, Issue 5, p. 12251245, 2015.
 [14] P. Lallemand, D. d’Humières, L.S. Luo, R. Rubinstein. “Theory of the lattice Boltzmann method: threedimensional model for linear viscoelastic fluids”, Physical Review E, vol. 67, 021203, 2003.
 [15] P. Lallemand, L.S. Luo. “Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability”, Physical Review E, vol. 61, p. 65466562, 2000.

[16]
M. Pinsky. “Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain”,
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9, vol. 9, Issue 2, p. 101111, 1968.  [17] R. D. Richtmyer, K. W. Morton. Difference Methods for InitialValue Problems, Interscience Publishers, New York, 1957.
 [18] K. Yee. “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Transactions on Antennas and Propagation, vol. 14, p. 302307, 1966.
Comments
There are no comments yet.