Understanding the stochastic partial differential equation approach to smoothing

01/21/2020
by   David L Miller, et al.
0

Correlation and smoothness are terms used to describe a wide variety of random quantities. In time, space, and many other domains, they both imply the same idea: quantities that occur closer together are more similar than those further apart. Two popular statistical models that represent this idea are basis-penalty smoothers (Wood, 2017) and stochastic partial differential equations (SPDE) (Lindgren et al., 2011). In this paper, we discuss how the SPDE can be interpreted as a smoothing penalty and can be fitted using the R package mgcv, allowing practitioners with existing knowledge of smoothing penalties to better understand the implementation and theory behind the SPDE approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset