Understanding Cloud Workloads Performance in a Production like Environment

10/10/2020 ∙ by Lucia Pons, et al. ∙ 0

Understanding inter-VM interference is of paramount importance to provide a sound knowledge and understand where performance degradation comes from in the current public cloud. With this aim, this paper devises a workload taxonomy that classifies applications according to how the major system resources affect their performance (e.g., tail latency) as a function of the level of load (e.g., QPS). After that, we present three main studies addressing three major concerns to improve the cloud performance: impact of the level of load on performance, impact of hyper-threading on performance, and impact of limiting the major system resources (e.g., last level cache) on performance. In all these studies we identified important findings that we hope help cloud providers improve their system utilization.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.