Uncovering the information core in recommender systems

02/25/2014 ∙ by Wei Zeng, et al. ∙ University of Fribourg 0

With the rapid growth of the Internet and overwhelming amount of information that people are confronted with, recommender systems have been developed to effiectively support users' decision-making process in online systems. So far, much attention has been paid to designing new recommendation algorithms and improving existent ones. However, few works considered the different contributions from different users to the performance of a recommender system. Such studies can help us improve the recommendation efficiency by excluding irrelevant users. In this paper, we argue that in each online system there exists a group of core users who carry most of the information for recommendation. With them, the recommender systems can already generate satisfactory recommendation. Our core user extraction method enables the recommender systems to achieve 90 data into account.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

References

  • 1 Brin, S. and Page, L. Comput. Netw. ISDN Syst. 30, 107–117 (1998).
  • 2 Adomavicius, G. and Tuzhilin, A. IEEE Trans. Knowl. Data. Eng. 17, 734–749 (2005).
  • 3 Koren, Y., Bell, R., and Volinsky, C. Computer 42, 30–37 (2009).
  • 4 Tang, J., Wu, S., Sun, J., and Su, H. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, 1285–1293, (2012).
  • 5 Lü, L. Y., Medo, M., Yeung, C. H., Zhang, Y. C., Zhang, Z. K., and Zhou, T. Phys. Rep. 519, 1–49 (2012).
  • 6 Chen, K., Chen, T., Zheng, G., Jin, O., Yao, E., and Yu, Y. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, 661–670, (2012).
  • 7 Xu, B., Bu, J., Chen, C., and Cai, D. In Proceedings of the 21st International Conference on World Wide Web, WWW ’12, 21–30, (2012).
  • 8 Lambiotte, R. and Ausloos, M. Phys. Rev. E 72, 066107 (2005).
  • 9 Huang, Z., Zeng, D. D., and Chen, H. Manage. Sci. 53, 1146–1164 (2007).
  • 10 Shang, M. S., Lü, L. Y., Zhang, Y. C., and Zhou, T. Europhys. Lett. 90, 48006 (2010).
  • 11 Zhou, T., Ren, J., Medo, M., and Zhang, Y. C. Phys. Rev. E 76, 046115 (2007).
  • 12 Zhang, Y. C., Medo, M., Ren, J., Zhou, T., Li, T., and Yang, F. Europhys. Lett. 80, 68003 (2007).
  • 13 Zhang, Y. C., Blattner, M., and Yu, Y. K. Phys. Rev. Lett. 99, 154301 (2007).
  • 14 Zhou, T., Kuscsik, Z., Liu, J. G., Medo, M., Wakeling, J. R., and Zhang, Y. C. Proc. Natl. Acad. Sci. U.S.A. 107, 4511–4515 (2010).
  • 15 Lü, L. Y. and Liu, W. P. Phys. Rev. E 83, 066119 (2011).
  • 16 Liu, J. G., Zhou, T., and Guo, Q. Phys. Rev. E 84, 037101 (2011).
  • 17 Zhang, F. G. and Zeng, A. Europhys. Lett. 100, 58005 (2012).
  • 18 Zeng, A., Yeung, C. H., Shang, M. S., and Zhang, Y. C. Europhys. Lett. 97, 18005 (2012).
  • 19 Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B. Recommender Systems Handbook. Springer, (2011).
  • 20 Zhou, Y. B., Lei, T., and Zhou, T. Europhys. Lett. 94, 48002 (2011).
  • 21 Manning, C. D., Raghavan, P., and Schütze, H. Introduction to Information Retrieval. Cambridge University Press, (2008).
  • 22 Lü, L. Y. and Zhou, T. Europhys. Lett. 89, 18001 (2010).
  • 23 Blattner, M., Zhang, Y. C., and Maslov, S. Physica A 373, 753–758 (2007).
  • 24 Lü, L. and Zhou, T. Physica A 390, 1150–1170 (2011).
  • 25 Huang, J., Cheng, X.-Q., Shen, H.-W., Zhou, T., and Jin, X. In Proceedings of the fifth ACM international conference on Web search and data mining, WSDM ’12, 573–582, (2012).
  • 26 Celma, O. Music Recommendation and Discovery in the Long Tail. Springer, (2010).
  • 27 Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhattacharjee, B. In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, IMC ’07, 29–42, (2007).
  • 28 Zeng, W. and Chen, L. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, 237–244, (2013).
  • 29 Chen, L., Zeng, W., and Yuan, Q. Expert Syst. Appl. 40, 2889–2903 (2013).
  • 30 Jamali, M. and Ester, M. In Proceedings of the fourth ACM conference on Recommender systems, RecSys ’10, 135–142, (2010).
  • 31 Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. ACM Trans. Inf. Syst. 22, 5–53 (2004).