Unconditional Quantum Advantage for Sampling with Shallow Circuits

by   Adam Bene Watts, et al.

Recent work by Bravyi, Gosset, and Koenig showed that there exists a search problem that a constant-depth quantum circuit can solve, but that any constant-depth classical circuit with bounded fan-in cannot. They also pose the question: can we achieve a similar proof of separation for an input-independent sampling task? In this paper, we show that the answer to this question is yes. We introduce a distribution D_n and give a constant-depth, n qubit, quantum circuit that samples from a distribution close to D_n in total variation distance. For any δ < 1 we also prove, unconditionally, that any classical circuit with bounded fan-in gates that takes as input n + n^δ uniformly random bits and produces output close to D_n in total variation distance has depth Ω(loglog n). This gives an unconditional proof that constant-depth quantum circuits can sample from distributions which can't be reproduced by constant-depth bounded fan-in classical circuits, even up to additive error. The distribution D_n and classical circuit lower bounds are based on work of Viola, in which he shows a different (but related) distribution cannot be sampled from approximately by constant-depth bounded fan-in classical circuits.


page 1

page 2

page 3

page 4


Average-Case Quantum Advantage with Shallow Circuits

Recently Bravyi, Gosset and König (Science 2018) proved an unconditional...

On the average-case complexity of learning output distributions of quantum circuits

In this work, we show that learning the output distributions of brickwor...

Quantum Garbled Circuits

We present a garbling scheme for quantum circuits, thus achieving a deco...

Testing Probabilistic Circuits

Probabilistic circuits (PCs) are a powerful modeling framework for repre...

Query and Depth Upper Bounds for Quantum Unitaries via Grover Search

We prove that any n-qubit unitary can be implemented (i) approximately i...

Classical algorithms for quantum mean values

We consider the task of estimating the expectation value of an n-qubit t...

Please sign up or login with your details

Forgot password? Click here to reset