Uncertainty Quantification in Deep Learning through Stochastic Maximum Principle

11/28/2020 ∙ by Richard Archibald, et al. ∙ 0

We develop a probabilistic machine learning method, which formulates a class of stochastic neural networks by a stochastic optimal control problem. An efficient stochastic gradient descent algorithm is introduced under the stochastic maximum principle framework. Convergence analysis for stochastic gradient descent optimization and numerical experiments for applications of stochastic neural networks are carried out to validate our methodology in both theory and performance.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.