Uncertainty quantification for fault slip inversion

by   J. Cricelio Montesinos-López, et al.

We propose an efficient Bayesian approach to infer a fault displacement from geodetic data in a slow slip event. Our physical model of the slip process reduces to a multiple linear regression subject to constraints. Assuming a Gaussian model for the geodetic data and considering a multivariate truncated normal prior distribution for the unknown fault slip, the resulting posterior distribution is also multivariate truncated normal. Regarding the posterior, we propose an algorithm based on Optimal Directional Gibbs that allows us to efficiently sample from the resulting high-dimensional posterior distribution of along dip and along strike movements of our fault grid division. A synthetic fault slip example illustrates the flexibility and accuracy of the proposed approach. The methodology is also applied to a real data set, for the 2006 Guerrero, Mexico, Slow Slip Event, where the objective is to recover the fault slip on a known interface that produces displacements observed at ground geodetic stations. As a by-product of our approach, we are able to estimate moment magnitude for the 2006 Guerrero Event with uncertainty quantification.



There are no comments yet.


page 10

page 13

page 15

page 16


Empirical priors and coverage of posterior credible sets in a sparse normal mean model

Bayesian methods provide a natural means for uncertainty quantification,...

DeepONet-Grid-UQ: A Trustworthy Deep Operator Framework for Predicting the Power Grid's Post-Fault Trajectories

This paper proposes a new data-driven method for the reliable prediction...

PAC-Bayes training for neural networks: sparsity and uncertainty quantification

We study the Gibbs posterior distribution from PAC-Bayes theory for spar...

Uncertainty Quantification of the 4th kind; optimal posterior accuracy-uncertainty tradeoff with the minimum enclosing ball

There are essentially three kinds of approaches to Uncertainty Quantific...

Bernstein-von Mises theorems and uncertainty quantification for linear inverse problems

We consider the statistical inverse problem of approximating an unknown ...

Semiparametric Bayesian Inference for Local Extrema of Functions in the Presence of Noise

There is a wide range of applications where the local extrema of a funct...

Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes

Few-shot classification (FSC), the task of adapting a classifier to unse...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.