Uncertainty quantification for distributed regression

05/24/2021 ∙ by Valeriy Avanesov, et al. ∙ 0

The ever-growing size of the datasets renders well-studied learning techniques, such as Kernel Ridge Regression, inapplicable, posing a serious computational challenge. Divide-and-conquer is a common remedy, suggesting to split the dataset into disjoint partitions, obtain the local estimates and average them, it allows to scale-up an otherwise ineffective base approach. In the current study we suggest a fully data-driven approach to quantify uncertainty of the averaged estimator. Namely, we construct simultaneous element-wise confidence bands for the predictions yielded by the averaged estimator on a given deterministic prediction set. The novel approach features rigorous theoretical guaranties for a wide class of base learners with Kernel Ridge regression being a special case. As a by-product of our analysis we also obtain a sup-norm consistency result for the divide-and-conquer Kernel Ridge Regression. The simulation study supports the theoretical findings.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.