Uncertainty Estimation with Infinitesimal Jackknife, Its Distribution and Mean-Field Approximation
Uncertainty quantification is an important research area in machine learning. Many approaches have been developed to improve the representation of uncertainty in deep models to avoid overconfident predictions. Existing ones such as Bayesian neural networks and ensemble methods require modifications to the training procedures and are computationally costly for both training and inference. Motivated by this, we propose mean-field infinitesimal jackknife (mfIJ) – a simple, efficient, and general-purpose plug-in estimator for uncertainty estimation. The main idea is to use infinitesimal jackknife, a classical tool from statistics for uncertainty estimation to construct a pseudo-ensemble that can be described with a closed-form Gaussian distribution, without retraining. We then use this Gaussian distribution for uncertainty estimation. While the standard way is to sample models from this distribution and combine each sample's prediction, we develop a mean-field approximation to the inference where Gaussian random variables need to be integrated with the softmax nonlinear functions to generate probabilities for multinomial variables. The approach has many appealing properties: it functions as an ensemble without requiring multiple models, and it enables closed-form approximate inference using only the first and second moments of Gaussians. Empirically, mfIJ performs competitively when compared to state-of-the-art methods, including deep ensembles, temperature scaling, dropout and Bayesian NNs, on important uncertainty tasks. It especially outperforms many methods on out-of-distribution detection.
READ FULL TEXT