Uncertainty-Aware Workload Prediction in Cloud Computing

02/24/2023
by   Andrea Rossi, et al.
0

Predicting future resource demand in Cloud Computing is essential for managing Cloud data centres and guaranteeing customers a minimum Quality of Service (QoS) level. Modelling the uncertainty of future demand improves the quality of the prediction and reduces the waste due to overallocation. In this paper, we propose univariate and bivariate Bayesian deep learning models to predict the distribution of future resource demand and its uncertainty. We design different training scenarios to train these models, where each procedure is a different combination of pretraining and fine-tuning steps on multiple datasets configurations. We also compare the bivariate model to its univariate counterpart training with one or more datasets to investigate how different components affect the accuracy of the prediction and impact the QoS. Finally, we investigate whether our models have transfer learning capabilities. Extensive experiments show that pretraining with multiple datasets boosts performances while fine-tuning does not. Our models generalise well on related but unseen time series, proving transfer learning capabilities. Runtime performance analysis shows that the models are deployable in real-world applications. For this study, we preprocessed twelve datasets from real-world traces in a consistent and detailed way and made them available to facilitate the research in this field.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset