DeepAI AI Chat
Log In Sign Up

Uncertain-DeepSSM: From Images to Probabilistic Shape Models

by   Jadie Adams, et al.

Statistical shape modeling (SSM) has recently taken advantage of advances in deep learning to alleviate the need for a time-consuming and expert-driven workflow of anatomy segmentation, shape registration, and the optimization of population-level shape representations. DeepSSM is an end-to-end deep learning approach that extracts statistical shape representation directly from unsegmented images with little manual overhead. It performs comparably with state-of-the-art shape modeling methods for estimating morphologies that are viable for subsequent downstream tasks. Nonetheless, DeepSSM produces an overconfident estimate of shape that cannot be blindly assumed to be accurate. Hence, conveying what DeepSSM does not know, via quantifying granular estimates of uncertainty, is critical for its direct clinical application as an on-demand diagnostic tool to determine how trustworthy the model output is. Here, we propose Uncertain-DeepSSM as a unified model that quantifies both, data-dependent aleatoric uncertainty by adapting the network to predict intrinsic input variance, and model-dependent epistemic uncertainty via a Monte Carlo dropout sampling to approximate a variational distribution over the network parameters. Experiments show an accuracy improvement over DeepSSM while maintaining the same benefits of being end-to-end with little pre-processing.


page 9

page 10


DeepSSM: A Blueprint for Image-to-Shape Deep Learning Models

Statistical shape modeling (SSM) characterizes anatomical variations in ...

From Images to Probabilistic Anatomical Shapes: A Deep Variational Bottleneck Approach

Statistical shape modeling (SSM) directly from 3D medical images is an u...

Deep Learning for End-to-End Atrial Fibrillation Recurrence Estimation

Left atrium shape has been shown to be an independent predictor of recur...

DEUP: Direct Epistemic Uncertainty Prediction

Epistemic uncertainty is the part of out-of-sample prediction error due ...

DeepSSM: A Deep Learning Framework for Statistical Shape Modeling from Raw Images

Statistical shape modeling is an important tool to characterize variatio...

Uncertainty-Aware Data Aggregation for Deep Imitation Learning

Estimating statistical uncertainties allows autonomous agents to communi...