Ultimate Intelligence Part II: Physical Measure and Complexity of Intelligence

04/09/2015
by   Eray Özkural, et al.
0

We continue our analysis of volume and energy measures that are appropriate for quantifying inductive inference systems. We extend logical depth and conceptual jump size measures in AIT to stochastic problems, and physical measures that involve volume and energy. We introduce a graphical model of computational complexity that we believe to be appropriate for intelligent machines. We show several asymptotic relations between energy, logical depth and volume of computation for inductive inference. In particular, we arrive at a "black-hole equation" of inductive inference, which relates energy, volume, space, and algorithmic information for an optimal inductive inference solution. We introduce energy-bounded algorithmic entropy. We briefly apply our ideas to the physical limits of intelligent computation in our universe.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset