UAV Trajectory, User Association and Power Control for Multi-UAV Enabled Energy Harvesting Communications: Offline Design and Online Reinforcement Learning

07/21/2022
by   Chien-Wei Fu, et al.
0

In this paper, we consider multiple solar-powered wireless nodes which utilize the harvested solar energy to transmit collected data to multiple unmanned aerial vehicles (UAVs) in the uplink. In this context, we jointly design UAV flight trajectories, UAV-node communication associations, and uplink power control to effectively utilize the harvested energy and manage co-channel interference within a finite time horizon. To ensure the fairness of wireless nodes, the design goal is to maximize the worst user rate. The joint design problem is highly non-convex and requires causal (future) knowledge of the instantaneous energy state information (ESI) and channel state information (CSI), which are difficult to predict in reality. To overcome these challenges, we propose an offline method based on convex optimization that only utilizes the average ESI and CSI. The problem is solved by three convex subproblems with successive convex approximation (SCA) and alternative optimization. We further design an online convex-assisted reinforcement learning (CARL) method to improve the system performance based on real-time environmental information. An idea of multi-UAV regulated flight corridors, based on the optimal offline UAV trajectories, is proposed to avoid unnecessary flight exploration by UAVs and enables us to improve the learning efficiency and system performance, as compared with the conventional reinforcement learning (RL) method. Computer simulations are used to verify the effectiveness of the proposed methods. The proposed CARL method provides 25 over the offline and conventional RL methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset