U-FNO – an enhanced Fourier neural operator based-deep learning model for multiphase flow

09/03/2021
by   Gege Wen, et al.
43

Numerical simulation of multiphase flow in porous media is essential for many geoscience applications. However, due to the multi-physics, non-linear, and multi-scale problem nature, these simulations are very expensive at desirable grid resolutions, and the computational cost often impedes rigorous engineering decision-making. Machine learning methods provide faster alternatives to traditional simulators by training neural network models with numerical simulation data mappings. Traditional convolutional neural network (CNN)-based models are accurate yet data-intensive and are prone to overfitting. Here we present a new architecture, U-FNO, an enhanced Fourier neural operator for solving the multiphase flow problem. The U-FNO is designed based on the Fourier neural operator (FNO) that learns an integral kernel in the Fourier space. Through a systematic comparison among a CNN benchmark and three types of FNO variations on a CO2-water multiphase problem in the context of CO2 geological storage, we show that the U-FNO architecture has the advantages of both traditional CNN and original FNO, providing significantly more accurate and efficient performance than previous architectures. The trained U-FNO provides gas saturation and pressure buildup predictions with a 10,000 times speedup compared to traditional numerical simulators while maintaining similar accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset