Two-stage Fall Events Classification with Human Skeleton Data

08/25/2022
by   Leiyu Xie, et al.
0

Fall detection and classification become an imper- ative problem for healthcare applications particularity with the increasingly ageing population. Currently, most of the fall clas- sification algorithms provide binary fall or no-fall classification. For better healthcare, it is thus not enough to do binary fall classification but to extend it to multiple fall events classification. In this work, we utilize the privacy mitigating human skeleton data for multiple fall events classification. The skeleton features are extracted from the original RGB images to not only mitigate the personal privacy, but also to reduce the impact of the dynamic illuminations. The proposed fall events classification method is divided into two stages. In the first stage, the model is trained to achieve the binary classification to filter out the no-fall events. Then, in the second stage, the deep neural network (DNN) model is trained to further classify the five types of fall events. In order to confirm the efficiency of the proposed method, the experiments on the UP-Fall dataset outperform the state-of-the-art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset