Two Failures of Self-Consistency in the Multi-Step Reasoning of LLMs

05/23/2023
by   Angelica Chen, et al.
5

Large language models (LLMs) have achieved widespread success on a variety of in-context few-shot tasks, but this success is typically evaluated via correctness rather than consistency. We argue that self-consistency is an important criteria for valid multi-step reasoning and propose two types of self-consistency that are particularly important for multi-step logic – hypothetical consistency (the ability for a model to predict what its output would be in a hypothetical other context) and compositional consistency (consistency of a model's outputs for a compositional task even when an intermediate step is replaced with the model's output for that step). We demonstrate that four sizes of the GPT-3 model exhibit poor consistency rates across both types of consistency on four different tasks (Wikipedia, DailyDialog, arithmetic, and GeoQuery).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset