Two Examples of Convex-Programming-Based High-Dimensional Econometric Estimators

06/27/2018
by   Zhan Gao, et al.
0

Economists specify high-dimensional models to address heterogeneity in empirical studies with complex big data. Estimation of these models calls for optimization techniques to handle a large number of parameters. Convex problems can be effectively executed in modern statistical programming languages. We complement Koenker and Mizera (2014)'s work on numerical implementation of convex optimization, with focus on high-dimensional econometric estimators. In particular, we replicate the simulation exercises in Su, Shi, and Phillips (2016) and Shi (2016) to show the robust performance of convex optimization cross platforms. Combining R and the convex solver MOSEK achieves faster speed and equivalent accuracy as in the original papers. The convenience and reliability of convex optimization in R make it easy to turn new ideas into prototypes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset