Two-derivative error inhibiting schemes with post-processing

12/09/2019
by   Adi Ditkowski, et al.
0

High order methods are often desired for the evolution of ordinary differential equations, in particular those arising from the semi-discretization of partial differential equations. In prior work in we investigated the interplay between the local truncation error and the global error to construct error inhibiting general linear methods (GLMs) that control the accumulation of the local truncation error over time. Furthermore we defined sufficient conditions that allow us to post-process the final solution and obtain a solution that is two orders of accuracy higher than expected from truncation error analysis alone. In this work we extend this theory to the class of two-derivative GLMs. We define sufficient conditions that control the growth of the error so that the solution is one order higher than expected from truncation error analysis, and furthermore define the construction of a simple post-processor that will extract an additional order of accuracy. Using these conditions as constraints, we develop an optimization code that enables us to find explicit two-derivative methods up to eighth order that have favorable stability regions, explicit strong stability preserving methods up to seventh order, and A-stable implicit methods up to fifth order. We numerically verify the order of convergence of a selection of these methods, and the total variation diminishing performance of some of the SSP methods. We confirm that the methods found perform as predicted by the theory developed herein.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
12/19/2019

IMEX error inhibiting schemes with post-processing

High order implicit-explicit (IMEX) methods are often desired when evolv...
research
10/07/2019

Explicit and implicit error inhibiting schemes with post-processing

Efficient high order numerical methods for evolving the solution of an o...
research
12/27/2020

Exponentially fitted two-derivative DIRK methods for oscillatory differential equations

In this work, we construct and derive a new class of exponentially fitte...
research
05/12/2021

Variable stepsize SDIMSIMs for ordinary differential equations

Second derivative general linear methods (SGLMs) have been already imple...
research
11/11/2013

Predictable Feature Analysis

Every organism in an environment, whether biological, robotic or virtual...
research
05/23/2023

Order conditions for Runge–Kutta-like methods with solution-dependent coefficients

In recent years, many positivity-preserving schemes for initial value pr...

Please sign up or login with your details

Forgot password? Click here to reset