Twin Networks: Using the Future as a Regularizer
Being able to model long-term dependencies in sequential data, such as text, has been among the long-standing challenges of recurrent neural networks (RNNs). This issue is strictly related to the absence of explicit planning in current RNN architectures. More explicitly, the RNNs are trained to predict only the next token given previous ones. In this paper, we introduce a simple way of encouraging the RNNs to plan for the future. In order to accomplish this, we introduce an additional neural network which is trained to generate the sequence in reverse order, and we require closeness between the states of the forward RNN and backward RNN that predict the same token. At each step, the states of the forward RNN are required to match the future information contained in the backward states. We hypothesize that the approach eases modeling of long-term dependencies thus helping in generating more globally consistent samples. The model trained with conditional generation for a speech recognition task achieved 12% relative improvement (CER of 6.7 compared to a baseline of 7.6).
READ FULL TEXT