Tweet2Vec: Character-Based Distributed Representations for Social Media

05/11/2016
by   Bhuwan Dhingra, et al.
0

Text from social media provides a set of challenges that can cause traditional NLP approaches to fail. Informal language, spelling errors, abbreviations, and special characters are all commonplace in these posts, leading to a prohibitively large vocabulary size for word-level approaches. We propose a character composition model, tweet2vec, which finds vector-space representations of whole tweets by learning complex, non-local dependencies in character sequences. The proposed model outperforms a word-level baseline at predicting user-annotated hashtags associated with the posts, doing significantly better when the input contains many out-of-vocabulary words or unusual character sequences. Our tweet2vec encoder is publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset