TTHRESH: Tensor Compression for Multidimensional Visual Data

06/15/2018
by   Rafael Ballester-Ripoll, et al.
0

Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for N-dimensional data over regular grids. It leverages the higher-order singular value decomposition (HOSVD), a generalization of the SVD to 3 and more dimensions, together with adaptive quantization, run-length and arithmetic coding to store the HOSVD transform coefficients' relative positions as sorted by their absolute magnitude. Our scheme degrades the data particularly smoothly and outperforms other state-of-the-art volume compressors at low-to-medium bit rates, as required in data archiving and management for visualization purposes. Further advantages of the proposed algorithm include extremely fine bit rate selection granularity, bounded resulting l^2 error, and the ability to manipulate data at very small cost in the compression domain, for example to reconstruct subsampled or filtered-resampled versions of all (or selected parts) of the data set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro