TSGN: Transaction Subgraph Networks for Identifying Ethereum Phishing Accounts

04/18/2021
by   Jinhuan Wang, et al.
0

Blockchain technology and, in particular, blockchain-based transaction offers us information that has never been seen before in the financial world. In contrast to fiat currencies, transactions through virtual currencies like Bitcoin are completely public. And these transactions of cryptocurrencies are permanently recorded on Blockchain and are available at any time. Therefore, this allows us to build transaction networks (TN) to analyze illegal phenomenons such as phishing scams in blockchain from a network perspective. In this paper, we propose a Transaction SubGraph Network (TSGN) based classification model to identify phishing accounts in Ethereum. Firstly we extract transaction subgraphs for each address and then expand these subgraphs into corresponding TSGNs based on the different mapping mechanisms. We find that TSGNs can provide more potential information to benefit the identification of phishing accounts. Moreover, Directed-TSGNs, by introducing direction attributes, can retain the transaction flow information that captures the significant topological pattern of phishing scams. By comparing with the TSGN, Directed-TSGN indeed has much lower time complexity, benefiting the graph representation learning. Experimental results demonstrate that, combined with network representation algorithms, the TSGN model can capture more features to enhance the classification algorithm and improve phishing nodes' identification accuracy in the Ethereum networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset