Trust in Social Network Games

03/02/2021 ∙ by Timothy Murray, et al. ∙ 0

We consider agents in a social network competing to be selected as partners in collaborative, mutually beneficial activities. We study this through a model in which an agent i can initiate a limited number k_i>0 of games and selects the ideal partners from its one-hop neighborhood. On the flip side it can accept as many games offered from its neighbors. Each game signifies a productive joint economic activity, and players attempt to maximize their individual utilities. Unsurprisingly, more trustworthy agents are more desirable as partners. Trustworthiness is measured by the game theoretic concept of Limited-Trust, which quantifies the maximum cost an agent is willing to incur in order to improve the net utility of all agents. Agents learn about their neighbors' trustworthiness through interactions and their behaviors evolve in response. Empirical trials performed on realistic social networks show that when given the option, many agents become highly trustworthy; most or all become highly trustworthy when knowledge of their neighbors' trustworthiness is based on past interactions rather than known a priori. This trustworthiness is not the result of altruism, instead agents are intrinsically motivated to become trustworthy partners by competition. Two insights are presented: first, trustworthy behavior drives an increase in the utility of all agents, where maintaining a relatively modest level of trustworthiness may easily improve net utility by as much as 14.5 modest trust among self-centered ones, it can increase its average utility by up to 25 opportunities are abundant agents become less trustworthy.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 13

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.