TrollHunter [Evader]: Automated Detection [Evasion] of Twitter Trolls During the COVID-19 Pandemic
This paper presents TrollHunter, an automated reasoning mechanism we used to hunt for trolls on Twitter during the COVID-19 pandemic in 2020. Trolls, poised to disrupt the online discourse and spread disinformation, quickly seized the absence of a credible response to COVID-19 and created a COVID-19 infodemic by promulgating dubious content on Twitter. To counter the COVID-19 infodemic, the TrollHunter leverages a unique linguistic analysis of a multi-dimensional set of Twitter content features to detect whether or not a tweet was meant to troll. TrollHunter achieved 98.5 over a dataset of 1.3 million tweets. Without a final resolution of the pandemic in sight, it is unlikely that the trolls will go away, although they might be forced to evade automated hunting. To explore the plausibility of this strategy, we developed and tested an adversarial machine learning mechanism called TrollHunter-Evader. TrollHunter-Evader employs a Test Time Evasion (TTE) approach in a combination with a Markov chain-based mechanism to recycle originally trolling tweets. The recycled tweets were able to achieve a remarkable 40 trolling tweets. Because the COVID-19 infodemic could have a harmful impact on the COVID-19 pandemic, we provide an elaborate discussion about the implications of employing adversarial machine learning to evade Twitter troll hunts.
READ FULL TEXT