TrNews: Heterogeneous User-Interest Transfer Learning for News Recommendation

01/12/2021 ∙ by Guangneng Hu, et al. ∙ 0

We investigate how to solve the cross-corpus news recommendation for unseen users in the future. This is a problem where traditional content-based recommendation techniques often fail. Luckily, in real-world recommendation services, some publisher (e.g., Daily news) may have accumulated a large corpus with lots of consumers which can be used for a newly deployed publisher (e.g., Political news). To take advantage of the existing corpus, we propose a transfer learning model (dubbed as TrNews) for news recommendation to transfer the knowledge from a source corpus to a target corpus. To tackle the heterogeneity of different user interests and of different word distributions across corpora, we design a translator-based transfer-learning strategy to learn a representation mapping between source and target corpora. The learned translator can be used to generate representations for unseen users in the future. We show through experiments on real-world datasets that TrNews is better than various baselines in terms of four metrics. We also show that our translator is effective among existing transfer strategies.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.