TridentSE: Guiding Speech Enhancement with 32 Global Tokens

10/24/2022
by   Dacheng Yin, et al.
0

In this paper, we present TridentSE, a novel architecture for speech enhancement, which is capable of efficiently capturing both global information and local details. TridentSE maintains T-F bin level representation to capture details, and uses a small number of global tokens to process the global information. Information is propagated between the local and the global representations through cross attention modules. To capture both inter- and intra-frame information, the global tokens are divided into two groups to process along the time and the frequency axis respectively. A metric discriminator is further employed to guide our model to achieve higher perceptual quality. Even with significantly lower computational cost, TridentSE outperforms a variety of previous speech enhancement methods, achieving a PESQ of 3.47 on VoiceBank+DEMAND dataset and a PESQ of 3.44 on DNS no-reverb test set. Visualization shows that the global tokens learn diverse and interpretable global patterns.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset