DeepAI
Log In Sign Up

Trees from Functions as Processes

04/16/2018
by   Davide Sangiorgi, et al.
0

Levy-Longo Trees and Bohm Trees are the best known tree structures on the λ-calculus. We give general conditions under which an encoding of the λ-calculus into the π-calculus is sound and complete with respect to such trees. We apply these conditions to various encodings of the call-by-name λ-calculus, showing how the two kinds of tree can be obtained by varying the behavioural equivalence adopted in the π-calculus and/or the encoding.

READ FULL TEXT

page 1

page 2

page 3

page 4

02/07/2022

Eager Functions as Processes (long version)

We study Milner's encoding of the call-by-value λ-calculus into the π-ca...
12/06/2021

Eager Functions as Processes

We study Milner's encoding of the call-by-value λ-calculus into the π-ca...
02/20/2018

Degrees of extensionality in the theory of Böhm trees and Sallé's conjecture

The main observational equivalences of the untyped lambda-calculus have ...
05/14/2021

N-ary Huffman Encoding Using High-Degree Trees – A Performance Comparison

In this paper we implement an n-ary Huffman Encoding and Decoding applic...
03/09/2000

BDD-based reasoning in the fluent calculus - first results

The paper reports on first preliminary results and insights gained in a ...
03/27/2013

An Uncertainty Management Calculus for Ordering Searches in Distributed Dynamic Databases

MINDS is a distributed system of cooperating query engines that customiz...
02/26/2019

The C_π-calculus: a Model for Confidential Name Passing

Sharing confidential information in distributed systems is a necessity i...