Trapezoidal rule and sampling designs for the nonparametric estimation of the regression function in models with correlated errors

06/13/2018
by   D. Benelmadani, et al.
0

The problem of estimating the regression function in a fixed design models with correlated observations is considered. Such observations are obtained from several experimental units, each of them forms a time series. Based on the trapezoidal rule, we propose a simple kernel estimator and we derive the asymptotic expression of its integrated mean squared error (IMSE) and its asymptotic normality. The problems of the optimal bandwidth and the optimal design with respect to the asymptotic IMSE are also investigated. Finally, a simulation study is conducted to study the performance of the new estimator and to compare it with the classical estimator of Gasser and Müller in a finite sample set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro