Transmission and navigation on disordered lattice networks, directed spanning forests and scaling limits

02/17/2020
by   Subhroshekhar Ghosh, et al.
0

Stochastic networks based on random point sets as nodes have attracted considerable interest in many applications, particularly in communication networks, including wireless sensor networks, peer-to-peer networks and so on. The study of such networks generally requires the nodes to be independently and uniformly distributed as a Poisson point process. In this work, we venture beyond this standard paradigm and investigate the stochastic geometry of networks obtained from directed spanning forests (DSF) based on randomly perturbed lattices, which have desirable statistical properties as a models of spatially dependent point fields. In the regime of low disorder, we show in 2D and 3D that the DSF almost surely consists of a single tree. In 2D, we further establish that the DSF, as a collection of paths, converges under diffusive scaling to the Brownian web.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset