Translating Visual Art into Music

The Synesthetic Variational Autoencoder (SynVAE) introduced in this research is able to learn a consistent mapping between visual and auditive sensory modalities in the absence of paired datasets. A quantitative evaluation on MNIST as well as the Behance Artistic Media dataset (BAM) shows that SynVAE is capable of retaining sufficient information content during the translation while maintaining cross-modal latent space consistency. In a qualitative evaluation trial, human evaluators were furthermore able to match musical samples with the images which generated them with accuracies of up to 73

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset